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A Zimm model for polyelectrolytes in an electric field

Didier Long†, Jean-Louis Viovy and Armand Ajdari
Laboratoire de Physico-Chimie Théorique, ESPCI, 10 rue Vauquelin, F-75231 Paris Cédex 05,
France

Received 15 July 1996

Abstract. By linearizing the electro-hydrodynamic equations and using general arguments,
we have recently described the deformation and drift of a polyelectrolyte in solution under the
simultaneous action of an electric field and a non-electric force, and obtained results qualitatively
different from previous theories. We show here how one can adapt the Zimm model to obtain
a more operational description for such problems, which allows us to recover our previous
results in a simple way and could be used to describe more general situations such as transient
phenomena or the electrophoresis of a polyampholyte.

We are interested here in the motion and the deformation of polyelectrolyte chains in
solutions at high salt concentration. In such solutions, the Debye length (i.e. the range
of the electrostatic interactions) is small. The backbone of the chain is surrounded by a thin
sheath of counterions, which screen the electrostatic interactions between the monomers of
the chain. Its equilibrium conformation can then be described by a random walk [1, 2]. The
end-to-end distance of the chain,R, scales asNν , whereN is the polymerization index of the
chain andν = 0.5 in the case of a Gaussian chain which will be considered here. Under the
action of neutral forces (sedimentation), the chain behaves essentially as a neutral polymer
and can be described by the Zimm model [3, 4]. In this model, the chain is represented as
a succession of beads linked by entropic springs. Long-range hydrodynamic interactions
between the monomers are taken into account, which gives rise to collective effects. For
forces small enough that the conformation of the chain is close to the equilibrium one, the
hydrodynamic friction scales as the end-to-end distance or asNν without any reference
to a monomeric friction. In this small-force regime, the chain deforms linearly from its
equilibrium conformation. At higher forces the chain deforms strongly and can even reach
full extension when pulled e.g. by one end in the solvent.

The behaviour of the chain under the action of an electric field (electrophoresis) is
very different. The electric field pulls the chain in one direction and the counterions in
the opposite one. This effect cancels the long-range hydrodynamic interactions between
the monomers, and the collective effects vanish. Electric and hydrodynamic forces balance
locally, which has two consequences: the electrophoretic mobility is independent of the size
and the chain is not deformed in electrophoresis conditions, even in a strong field.

When an electric field and a neutral force act simultaneously, features of sedimentation
and electrophoresis are both present. By linearizing the electro-hydrodynamic equations,
and using general arguments, we have proven recently [5, 6] that the deformation of an
end-tethered chain submitted to an electric fieldE is the one it adopts when submitted to a
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uniform flow of solvent at velocityV = µE, and that the force exerted by the anchoring
point on the chain isfchµE, wherefch is the hydrodynamic friction of the chain in the
adopted conformation. In particular, in the small-force regime, where the chain is only
slightly deformed, this force is proportional to the unperturbed radius and thus scales as
Nν .

The aim of this paper is to propose a more operational model, derived from the Zimm
model, to deal with the deformation and drift of polyelectrolytes under the simultaneous
action of an electric field and a non-electric force, in the small-Debye-length regime. This
model allows us to obtain in a different way our previous results and provides a general
frame for an analytical or numerical treatment of more complex systems. First we derive
our model which is then applied to the case of a uniform polyelectrolyte. To illustrate
the broader applicability of our model we then show how it allows us to describe the
electrophoresis of a diblock polyelectrolyte.

Let us derive our model. Consider first a uniformly charged sphere in a solution. We
assume that the sphere is an insulator, that its radiusa is much larger than the Debye length
of the solution, and that the surface potentialζ is small i.e.eζ/kBT � 1. Under the
action of an electric fieldE, the sphere moves at a velocityµE, where the electrophoretic
mobility µ of the sphere is given by [7]µ = εε0ζ/η, whereεε0 and η are the dielectric
permittivity and the viscosity of the solvent respectively. The action of the electric field
induces a hydrodynamic flow in the solution, which is given, in the frame of the solution
and beyond the Debye layer, by [8]

Vr(r, θ) = µE0(a
3/r3) cosθ

Vθ (r, θ) = µE0
1
2(a3/r3) sin θ

(1)

and is rapidly decaying (r−3). Let us now pull the sphere by an additional neutral force
F . Due to the linearity of the electrohydrodynamic equations (at first order), the particle
moves at a velocityµE + F/6πηa while the induced hydrodynamic flow is the sum of
equation (1) and of a Stokes flow:

Vr(r, θ) = µE0(a
3/r3) cosθ + (F/6πηa)

[
3
2a/r − 1

2a3/r3
]

cosθ

Vθ (r, θ) = µE0
1
2(a3/r3) sin θ − (F/6πηa)

[
3
4a/r + 1

4a3/r3
]

sin θ.
(2)

Consider now the Zimm model for polymers in a pure sedimentation situation. The
molecule is represented as a chain ofN connected beads. Along the chain, there is a
tensionT (m) at the mth bead (algebraic convention: it is the force exerted by themth
on the (m − 1)th bead). Note thatT (1) = T (N) = 0. Thus the total force exerted on
the mth bead by its neighbours is1T (m) = T (m + 1) − T (m). Under the action of a
force f (m) on themth bead, this bead reaches a velocity equal to the force divided by the
bead friction and generates a long-range flow in the solution (r−1 term in equations (2)).
The velocity of thenth bead is then∂R(n)/∂t = ∑

m H(n, m)[1T (m) + f (m) + g(m)]
whereH(n, m) is the Oseen tensor which describes the hydrodynamic interaction between
the monomers [3, 4],R(n) is the position of thenth monomer andg(m) is the thermal
noise. Note thatR(n), 1T (m), f (m) andg(m) are vectors. The Oseen tensor derives from
the long-range component of the Stokes flow and decays like the inverse of the distance
between two segments, with the convention thatH(n, n) is the inverse of the friction
coefficient of one bead. Consider a Gaussian chain at equilibrium. If one neglects end
effects, the sum

∑
n H(n, m) is independent ofm and the velocity of the chain is given by
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V ∼= F(1/N)[
∑

n, m H(n, m)] whereF is the total force
∑

m f (m). One has thus

V ∼= F
1

N

[
1

ζ
+

∫ aN1/2

a

1

ηr
g(r)r2 dr

]
= F

1

N

[
1

ζ
+

∫ aN1/2

a

1

ηa2
dr

]
(3)

whereg(r) is the correlation function between monomers in the coil which scales asr−1.
The term 1/ζ corresponds to the mobility of a single monomer and the integral corresponds
to the collective effect due to the hydrodynamic interactions between the monomers. Due
to the slow decay of the hydrodynamic interactions the contribution of the off-diagonal
terms is dominant for long chains as the integral in equation (3) is diverging. Thus the
hydrodynamic friction of the polymer coil∼= [(1/N)

∑
n, m H(n, m)]−1, scales asN1/2

in the equilibrium conformation. For a polyelectrolyte of Gaussian conformation in pure

electrophoresis conditions, one obtains in an analogous wayV ∼= µE+µEa3
∫ aN1/2

a
dr/a2r2.

In contrast to the case of sedimentation, due to the rapid decrease of the hydrodynamic
interactions under pure electrophoresis conditions (r−3) and to the tenuous nature of a
polymer, the integral here is convergent at largeN [9]. Thus the role of the collective
terms amounts at most to a redefinition of the electrophoretic mobility, which depends on
the conformation of the chain at small length scale only [1, 9]. The electrophoretic mobility
of the chain is thus a local property: the hydrodynamic interactions of particles in pure
electrophoresis conditions are short range in the sense that no collective effects build up.
Thus, under both neutral and electric forces, the velocity of the beads is given by

∂R(n)

∂t
= µ(n)E +

∑
m

H(n, m)[1T (m) + f (m) + g(m)] (4)

whereµ(n) is the electrophoretic mobility of thenth monomer. This equation is the central
result of this paper. The main points to obtain equation (4) are that the electric field acts
only locally (in the high-salt-concentration regime), and that both electric and non-electric
effects superimpose linearly. Note that the mobilityµ(n) depends on the conformation of
the chain at small-length scale around thenth monomer. Thus equation (4) is valid whatever
the conformation of the chain, provided the chain is not deformed (or only slightly) at the
small-length scale on which is defined the electrophoretic mobility. To take the thermal noise
into account, we make the so-called preaveraging approximation by replacingH(n, m) by
the value of this tensor in the typical average conformation of the molecule, which we will
still denote byH(n, m) [4], and we putg(m) = 0 in the following.

Let us first apply our model to a uniform polyelectrolyte (i.e.µ(n) = µ, independent of
the monomer) submitted simultaneously to electric and non-electric forces. The chain can
deform and acquire a new conformation. At steady state, all the velocities∂R(n)/∂t are
equal to the velocityV of the chain. Thus equation (4) reads, for each value ofn,

1T (n) + f (n) =
[∑

m

G(n, m)

]
(V − µE) (5)

whereG(n, m) is the inverse of the tensorH(n, m). Formally, one could calculate the
conformation by solving self-consistently the equations (5) whereG(n, m) depends on the
conformation, which in turn depends on the tension1T (n). This calculation is not an easy
task, but some general results can be obtained. Indeed, these equations (5) depend only on
the differenceV −µE. We deduce from this that the deformation of an immobilized chain,
i.e. V = 0, subjected to an electric fieldE and to a given distribution of neutral forces, is
the same as the deformation of a chain pulled in the solvent at velocity−µE and subjected
to the same distribution of neutral forces in the absence of the electric field, i.e.E = 0
[5, 6]. When the forces are small, the conformation is the equilibrium one and one finds that
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F = [
∑

n,m Geq(n, m)](V −µE) whereF is the total neutral force acting on the molecule.
The quantityζeq = ∑

n, m Geq(n, m) ∼= [(1/N)
∑

n, m Heq(n, m)]−1 ∼= 6πηR is the usual
hydrodynamic friction in the chain equilibrium conformation as calculated by Zimm [3]. In
particular the forceFh to hold the chain immobile in an electric field is−ζeqµE, which
scales asN1/2 [5, 6].

Let us now apply our model to a diblock copolyelectrolyte, where it will allow a more
systematic description than the simple one presented in [10]. The molecule is composed of
two charged chains, made up of segments of electrophoretic mobilitiesµ1 and µ2 and of
polymerization indicesN1 andN2 respectively (N = N1 + N2). Then, under the action of
an electric field and neutral forces, the motion of the chain is described by the equations (4),
with µ(n) = µ1 if n 6 N1 andµ(n) = µ2 if n > N1. We consider first the case of pure
electrophoresis (f (n) = 0) in a small electric field. Then the chain is not deformed and one
can calculate the velocity using the equilibrium conformation. In the permanent regime, the
velocity is given by

V = [
∑

n, m6N1
Geq(n, m)]µ1 + [

∑
n, m>N1

Geq(n, m)]µ2∑
n, m Geq(n, m)

E. (6)

This quantity is not easy to calculate exactly. However, for large chains, one can neglect
end effects [4]. Then

∑
n Geq(n, m) is essentially independent ofm and the velocityV is

given by

V = N1µ1 + N2µ2

N
E. (7)

Consider now the case of a high electric field. We consider a field sufficiently high
that the two different parts of the chain are separated due to the different mobilities, with
one part pulling the other. As the two different parts of the chain are separated, we neglect
hydrodynamic interactions between them. Thus equation (4) for a segment of the first block
becomes∂R(n)/∂t = µ1E + ∑N1

m=1 H(n, m) 1T (m). For each block, the situation is very
similar to the case of a uniform polyelectrolyte, the only difference being the non-vanishing
tension at one end of each block. One obtains for the tension at theN1th segment

T
(
N1

) =
[ ∑

(n, m)6N1

G(n, m)

](
V − µ1E

) = −
[ ∑

(n, m)>N1

G(n, m)

](
V − µ2E

)
. (8)

The velocity of the molecule is then given by [10]

V = ζ1µ1 + ζ2µ2

ζ1 + ζ2
E (9)

where we have denoted byζ1 and ζ2 the hydrodynamic friction
∑

(n, m)6N1
G(n, m) and∑

(n, m)>N1
G(n, m) of each block of the chain in their stretched conformation.

In conclusion, we have proposed a Zimm model for polyelectrolytes in an electric field,
which allows us to describe their deformation and drift in a more operational way than
our previous analysis. This model allows for more quantitative studies and could be used
to describe more complex situations such as transient effects, or the electrophoresis of a
polyampholyte chain, which we wish to address in a forthcoming publication.
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